BW #16 •What are the phases of mitosis in order?

COMPARING MITOSIS & MEIOSIS

CELL DIVISION!

Cell Cycle....how living things GROW!!

Interphase Prophase Metaphase Anaphase Telophase

Cytokinesis

https://ww w.youtube. com/watch ?v=L0kenzoeOM

THE STRUCTURE OF CHROMOSOMES

INTERPHASE

• DNA gets replicated

MITOSIS - WHERE THE ACTION HAPPENS!

P-Prophase**M-** Metaphase**A-** Anaphase**T-** Telophase

STEP 1 - Prophase

- Duplicated strands of sister chromatids pair up and condense into chromosomes
 Strands are connected in middle by a centromere
 Centrioles move to either end
- ONucleus and Nucleolus dissolve
- o"P"rophase="P"repare

STEP 2 - Metaphase OChromosomes line

up in the middle of the cell in a straight line

O"M"etaphase="M"iddl

e

OChromosomes attach to **spindle fibers** at **centromere**

STEP 3 - Anaphase

• Chromatids are pulled to opposite sides of the cell by spindle fibers

• "A"naphase="A"part
 • Become Daughter
 • Chromosomes

STEP 4 - Telophase

 Nucleus reforms around daughter chromosomes
 "T"elophase="T"wo nuclei

 Daughter chromosomes uncoil to form chromatin

CYTOKINESIS

The cytoplasm divides forming 2 daughter cells

Each daughter cell is an exact copy of original

STAGES OF MITOSIS

Amimation:

https://www.youtube.com/watch?v=NR0mdDJMHIQ

Plut cells in various stages of mitosis: (a) prophase; (b) metaphase; (c) anaphase; (d) telophase (all magnified about 2,700 times)

Practice: http://www.biology.arizona.edu/cell_bio/activities/cell_cycle/cell_cycle.html

oWhere???

Occurs in somatic (body) cells
 OWHY??

- Produces cells for repair, maintenance, growth, asexual reproduction
- **•**Final Product??
 - 2 identical cells

•Why is there another type of cell division (meiosis)?

omeiosis intro

TERMS TO KNOW (PAGE122-125)

oDiploid oHaploid •Gametes oFertilization •Zygote •Crossing over

DIPLOID VERSUS HAPLOID • Diploid cells have two of each kind of chromosome. 2n

• Haploid cells have only one of each kind of chromosome. N

Haploid (n)

· One copy of genetic material subdivided into chromosomes • Eg. Gametes (sperm and eggs)

chromosomes

Diploid (2n)

- · Two copies of genetic material subdivided into chromosomes
- Somatic cells

NUMBER OF CHROMOSOMES IN COMMON ORGANISMS

Organism	Body Cell (2n) Diploid	Gamete (n) haploid
Fruit Fly	8	4
Garden Pea		7
Corn	20	
Leopard Frog		13
Apple	34	
Human		23
Chimpanzee	48	
Dog		39
Adder's tounge Fern	1260	

"Putting It All Together" - Fertilization Haploid sperm Diploid zygote Haploid egg

WHY DON'T SIBLINGS LOOK EXACTLY ALIKE IF THEY HAVE THE SAME PARENTS?

Interphase

Prophase I Synapsis and

crossing over occur.

Metaphase I

Anaphase I

separate.

Telophase I

Homologous

plate.

Dairs

Tetrads line up

on the metaphase

Tetrad (paired homologous, chromosomes with two

chromatids each)

THE PROCESS OF MEIOSIS

- Meiosis is divided into two phases:
 - Meiosis I and Meiosis II

MEIOSIS II

Metaphase II Chromosomes line up on the metaphase

Anaphase II Sister chromatids separate.

Telophase II

Cytokinesis II

4 haploid daughter cells are formed, each having only one chromosome of each homologous pair.

Cytokinesis |

To Prophase II

PROPHASE I

Late prophase

Chromatids pair. Crossing over occurs. Chromosomes condense. Spindle forms. Nuclear envelope fragments.

CROSSING OVER IN MEIOSIS I

homologous chromosome pair

As the chromosomes move closer together, synapsis occurs.

METAPHASE I

Chromatid pairs align along the equator of the cell.

ANAPHASE I

Chromosomes separate and move to opposite poles.

Sister chromatids remain Attached at their centromeres.

Nuclear envelopes reassemble.

Spindle disappears.

Cytokinesis divides cell into two.

PROPHASE II

Spindle forms.

METAPHASE II

Chromosomes align along equator of cell.

ANAPHASE II

Sister chromatids separate and move to opposite poles.

TELOPHASE II

Nuclear envelope assembles.

Chromosomes unravel.

Spindle disappears.

Cytokinesis divides cell into two.

RESULTS OF MEIOSIS

◇ Four haploid cells
 ◇ One copy of each chromosome
 ◇ animation

MEIOSIS

- Each phase (PMAT) happens twice
- End with 4 daughter cells
- Each cell in the end **(gamete)** only has **half** the number of chromosomes **(Haploid)**

MEIOSIS

•Where???

- Only in REPRODUCTIVE ORGANS

 Testes, Ovaries, flower (plants)
 WHY??
 - Produces cells required for sexual reproduction
 - •Gametes cells
 - •Sperm, egg
 - •Pollen, Ovule
- Final Product??
 - 4 Haploid cells that are different

	Mitosis	Meiosis	
Number of divisions	1	2	
Number of daughter cells	2	4	
Genetically identical?	Yes	No	
Chromosome #	Same as parent DIPLOID	Half of parent HAPLOID	
Where	Somatic cells (Body Cells)	Reproductive Organs	
When	Throughout life	At sexual maturity	
Function	Growth and repair	Sexual reproduction	

BACK TO OUR ORIGINAL QUESTION...

Why don't siblings look exactly alike if they have the same parents?

MEIOSIS CREATES GENETIC VARIATION

 Crossing Over - creates new genetic combinations
 Random Alignment - Chromosomes line up randomly during Metaphase I so all chromosomes from mother or father do not end up in same gamete

)(•	7	۲	5
)(6)(€ 8	К 9) (10)()(12
13) (14) 15		{) (17) (18
	21	11	• • • •		2	1
19	20	21	22		X	Y 8. Gibbs (GNI

homologous chromosome pair

As the chromosomes move closer together, synapsis occurs.

Chromatids break, and genetic information is exchanged.

MEIOSIS CREATES GENETIC VARIATION

 Crossing Over - creates new genetic combinations
 Random Alignment - Chromosomes line up randomly during Metaphase I so all chromosomes from mother or father do not end up in same gamete

BW #17

•Name one difference in mitosis and meiosis.

<u>Mitosis</u> <u>vs.</u> <u>Meiosis</u> <u>Animation</u>

MITOSIS VS. MEIOSIS

<u>Mitosis</u> <u>vs.</u> <u>Meiosis</u> An<u>imation 1</u>

Animation 2

Crash Course: Meiosis and Sexual Reproduction

https://www.youtube.com/watch?v=qCLmR9-YY7o

CANCER

https://www.youtube.com/watch?v=lpAa4TWjHQ4